Extensions 1→N→G→Q→1 with N=C3 and Q=D4xC32

Direct product G=NxQ with N=C3 and Q=D4xC32
dρLabelID
D4xC33108D4xC3^3216,151

Semidirect products G=N:Q with N=C3 and Q=D4xC32
extensionφ:Q→Aut NdρLabelID
C3:1(D4xC32) = C32xD12φ: D4xC32/C3xC12C2 ⊆ Aut C372C3:1(D4xC3^2)216,137
C3:2(D4xC32) = C32xC3:D4φ: D4xC32/C62C2 ⊆ Aut C336C3:2(D4xC3^2)216,139

Non-split extensions G=N.Q with N=C3 and Q=D4xC32
extensionφ:Q→Aut NdρLabelID
C3.1(D4xC32) = D4xC3xC9central extension (φ=1)108C3.1(D4xC3^2)216,76
C3.2(D4xC32) = D4xHe3central stem extension (φ=1)366C3.2(D4xC3^2)216,77
C3.3(D4xC32) = D4x3- 1+2central stem extension (φ=1)366C3.3(D4xC3^2)216,78

׿
x
:
Z
F
o
wr
Q
<